Orbital Stability of Spherical Galactic Models
Mohammed Lemou, Centre National de la Recherche Scientifique (CNRS)

We consider the three dimensional gravitational Vlasov Poisson system which is a canonical model in astrophysics to describe the dynamics of galactic clusters. A well known conjecture is the stability of spherical models which are nonincreasing functions of their microscopic energy and radially symmetric steady states solutions. This conjecture was proved at the linear level by several authors in the continuation of the breakthrough work by Antonov in 1961. In a previous work, we derived the stability of anisotropic models under spherically symmetric perturbations using fundamental monotonicity properties of the Hamiltonian under suitable generalized symmetric rearrangements first observed in the physics literature.

In this work, we show how this approach combined with a new generalized Antonov type coercivity property implies the orbital stability of spherical models under general perturbations. We also show that this stability result can be completely quantified through functional inequalities, which will be discussed at the end of this talk.